Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399707

RESUMO

Cellulolytic microorganisms play a crucial role in agricultural waste disposal. Strain QXD-8T was isolated from soil in northern China. Similarity analyses of the 16S rRNA gene, as well as the 120 conserved genes in the whole-genome sequence, indicate that it represents a novel species within the genus Microbacterium. The Microbacterium sp. QXD-8T was able to grow on the CAM plate with sodium carboxymethyl cellulose as a carbon source at 15 °C, forming a transparent hydrolysis circle after Congo red staining, even though the optimal temperature for the growth and cellulose degradation of strain QXD-8T was 28 °C. In the liquid medium, it effectively degraded cellulose and produced reducing sugars. Functional annotation revealed the presence of encoding genes for the GH5, GH6, and GH10 enzyme families with endoglucanase activity, as well as the GH1, GH3, GH39, and GH116 enzyme families with ß-glucosidase activity. Additionally, two proteins in the GH6 family, one in the GH10, and two of nine proteins in the GH3 were predicted to contain a signal peptide and transmembrane region, suggesting their potential for extracellularly degrade cellulose. Based on the physiological features of the type strain QXD-8T, we propose the name Microbacterium psychrotolerans for this novel species. This study expands the diversity of psychrotolerant cellulolytic bacteria and provides a potential microbial resource for straw returning in high-latitude areas at low temperatures.

2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366248

RESUMO

The origin of methanogenesis can be traced to the common ancestor of non-DPANN archaea, whereas haloarchaea (or Halobacteria) are believed to have evolved from a methanogenic ancestor through multiple evolutionary events. However, due to the accelerated evolution and compositional bias of proteins adapting to hypersaline habitats, Halobacteria exhibit substantial evolutionary divergence from methanogens, and the identification of the closest methanogen (either Methanonatronarchaeia or other taxa) to Halobacteria remains a subject of debate. Here, we obtained five metagenome-assembled genomes with high completeness from soda-saline lakes on the Ordos Plateau in Inner Mongolia, China, and we proposed the name Candidatus Ordosarchaeia for this novel class. Phylogenetic analyses revealed that Ca. Ordosarchaeia is firmly positioned near the median position between the Methanonatronarchaeia and Halobacteria-Hikarchaeia lineages. Functional predictions supported the transitional status of Ca. Ordosarchaeia with the metabolic potential of nonmethanogenic and aerobic chemoheterotrophy, as did remnants of the gene sequences of methylamine/dimethylamine/trimethylamine metabolism and coenzyme M biosynthesis. Based on the similarity of the methyl-coenzyme M reductase genes mcrBGADC in Methanonatronarchaeia with the phylogenetically distant methanogens, an alternative evolutionary scenario is proposed, in which Methanonatronarchaeia, Ca. Ordosarchaeia, Ca. Hikarchaeia, and Halobacteria share a common ancestor that initially lost mcr genes. However, certain members of Methanonatronarchaeia subsequently acquired mcr genes through horizontal gene transfer from distantly related methanogens. This hypothesis is supported by amalgamated likelihood estimation, phylogenetic analysis, and gene arrangement patterns. Altogether, Ca. Ordosarchaeia genomes clarify the sisterhood of Methanonatronarchaeia with Halobacteria and provide new insights into the evolution from methanogens to haloarchaea.


Assuntos
Euryarchaeota , Metano , Filogenia , Metano/metabolismo , Euryarchaeota/metabolismo , Archaea , Metagenoma
3.
Microbiol Spectr ; : e0495322, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971559

RESUMO

Glutamine synthetase (GS) is responsible for the ammonium assimilation into glutamine, which serves as an important nitrogen donor for the synthesis of biomolecules and also plays a key role in regulating the nitrogen fixation catalyzed by nitrogenase. Rhodopseudomonas palustris, whose genome encodes 4 putative GSs and 3 nitrogenases, is an attractive photosynthetic diazotroph for studies of nitrogenase regulation, as it can produce the powerful greenhouse gas (methane) by iron-only (Fe-only) nitrogenase using light energy. However, the primary GS enzyme for ammonium assimilation and its role in nitrogenase regulation remain elusive in R. palustris. Here, we show that GlnA1, whose activity is finely regulated by reversible adenylylation/deadenylylation of Tyr398 residue, is primarily responsible for ammonium assimilation as the preferred GS in R. palustris. The inactivation of GlnA1 makes R. palustris shift to use the alternative GlnA2 for ammonium assimilation, resulting in the expression of Fe-only nitrogenase even in the presence of ammonium. We present a model, showing how R. palustris responds to ammonium availability and further regulates the expression of Fe-only nitrogenase. These data may contribute to the design of promising strategies for a better control of greenhouse gas emissions. IMPORTANCE The photosynthetic diazotrophs, such as Rhodopseudomonas palustris, can utilize light energy to drive the conversion of carbon dioxide (CO2) to a much more powerful greenhouse gas methane (CH4) by Fe-only nitrogenase, which is strictly regulated in response to the ammonium, a substrate of glutamine synthetase for the biosynthesis of glutamine. However, the primary glutamine synthetase for ammonium assimilation and its role in nitrogenase regulation remain unclear in R. palustris. This study shows that GlnA1 is the primary glutamine synthetase for ammonium assimilation, and also plays a key role in Fe-only nitrogenase regulation in R. palustris. For the first time, a R. palustris mutant capable of expressing Fe-only nitrogenase even in the presence of ammonium is obtained by inactivation of GlnA1. A better understanding of the Fe-only nitrogenase regulation achieved in this study provide us with new insights into the efficient control of CH4 emissions.

4.
mSystems ; 7(6): e0066922, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36259734

RESUMO

Members of the phylum "Candidatus Nanohaloarchaeota," a representative lineage within the DPANN superphylum, are characterized by their nanosized cells and symbiotic lifestyle with Halobacteria. However, the development of the symbiosis remains unclear. Here, we propose two novel families, "Candidatus Nanoanaerosalinaceae" and "Candidatus Nanohalalkaliarchaeaceae" in "Ca. Nanohaloarchaeota," represented by five dereplicated metagenome-assembled genomes obtained from hypersaline sediments or related enrichment cultures of soda-saline lakes. Phylogenetic analyses reveal that the two novel families are placed at the root of the family "Candidatus Nanosalinaceae," including the cultivated taxa. The two novel families prefer hypersaline sediments, and the acid shift of predicted proteomes indicates a "salt-in" strategy for hypersaline adaptation. They contain a lower proportion of putative horizontal gene transfers from Halobacteria than "Ca. Nanosalinaceae," suggesting a weaker association with Halobacteria. Functional prediction and historical events reconstruction disclose that they exhibit divergent potentials in carbohydrate and organic acid metabolism and environmental responses. Globally, comparative genomic analyses based on the new families enrich the taxonomic and functional diversity of "Ca. Nanohaloarchaeota" and provide insights into the evolutionary process of "Ca. Nanohaloarchaeota" and their symbiotic relationship with Halobacteria. IMPORTANCE The DPANN superphylum is a group of archaea widely distributed in various habitats. They generally have small cells and have a symbiotic lifestyle with other archaea. The archaeal symbiotic interaction is vital to understanding microbial communities. However, the formation and evolution of the symbiosis between the DPANN lineages and other diverse archaea remain unclear. Based on phylogeny, habitat distribution, hypersaline adaptation, host prediction, functional potentials, and historical events of "Ca. Nanohaloarchaeota," a representative phylum within the DPANN superphylum, we report two novel families representing intermediate stages, and we infer the evolutionary process of "Ca. Nanohaloarchaeota" and their Halobacteria-associated symbiosis. Altogether, this research helps in understanding the evolution of symbiosis in "Ca. Nanohaloarchaeota" and provides a model for the evolution of other DPANN lineages.


Assuntos
Euryarchaeota , Microbiota , Filogenia , Halobacterium , Archaea , Genômica
5.
Front Microbiol ; 13: 875843, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35516424

RESUMO

Thioalkalivibrio versutus D301 has been widely used in the biodesulfurization process, as it is capable of oxidizing hydrogen sulfide to elemental sulfur under strongly halo-alkaline conditions. Glycine betaine contributes to the increased tolerance to extreme environments in some of Thioalkalivibrio species. However, the biosynthetic pathway of glycine betaine in Thioalkalivibrio remained unknown. Here, we found that genes associated with nitrogen metabolism of T. versutus D301 were significantly upregulated under high-salt conditions, causing the enhanced production of glycine betaine that functions as a main compatible solute in response to the salinity stress. Glycine betaine was synthesized by glycine methylation pathway in T. versutus D301, with glycine N-methyltransferase (GMT) and sarcosine dimethylglycine N-methyltransferase (SDMT) as key enzymes in this pathway. Moreover, substrate specificities of GMT and SDMT were quite different from the well characterized enzymes for glycine methylation in halophilic Halorhodospira halochloris. Our results illustrate the glycine betaine biosynthetic pathway in the genus of Thioalkalivibrio for the first time, providing us with a better understanding of the biosynthesis of glycine betaine in haloalkaliphilic Thioalkalivibrio.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35244531

RESUMO

A haloalkaliphilic strain (IM 1326T) was isolated from brine sampled at a soda lake in the Inner Mongolia Autonomous Region, China. Cells of the strain were rod-shaped and motile. Strain IM 1326T was able to grow at 4-42 °C (optimum, 37 °C) with 0-13.0 % (w/v) NaCl concentrations (optimum at 4.0-6.0 %) and at pH 7.5-11.0 (optimum at 9.0-10.0). The 16S rRNA gene phylogenetic analysis revealed that the isolate belongs to the genus Aliidiomarina and is closely related to the type strains of Aliidiomarina sanyensis (95.8 % sequence similarity), Aliidiomarina shirensis (95.7 %), Aliidiomarina iranensis (95.4 %) and Aliidiomarina haloalkalitolerans (95.3 %). The whole genome of strain IM 1326T was sequenced, and the genomic DNA G+C content was 49.7 mol%. Average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between the isolate and the related Aliidiomarina species were 68.1-84.9 %, 76-78 % and 18.4-20.4 %, respectively. The respiratory quinone was ubiquinone-8. The polar lipid profile included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and one unidentified aminophospholipid. The predominant cellular fatty acids were summed feature 9 (10-methyl-C16 : 0/iso-C17 : 1 ω9c, 22.2 %), iso-C15 : 0 (16.1 %) and iso-C17 : 0 (13.1 %). Based on the results of phylogenetic analysis, genome relatedness, and the physiological and chemotaxonomic properties of the isolate, strain IM 1326T is considered to represent a novel species of the genus Aliidiomarina, for which the name Aliidiomarina halalkaliphila sp. nov. is proposed (type strain IM 1326T=CGMCC 1.17056T=JCM 34227T).


Assuntos
Ácidos Graxos , Lagos , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Lagos/microbiologia , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Arch Microbiol ; 204(2): 145, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35059846

RESUMO

A novel Gram-stain-negative bacterium, designated as IM2376T, was isolated from the sediment of Hutong Qagan Lake in the Ordos, Inner Mongolia Autonomous Region of China. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the strain IM2376T had the highest similarity with Roseinatronobacter thiooxidans DSM 13087T (96.2%) and Rhodobaca bogoriensis LBB1T (96.2%) of the family Rhodobacteraceae. Genomic relatedness analyses showed that strain IM2376T was clearly distinguished from other species in the family Rhodobacteraceae, with average nucleotide identities, average amino acid identities, and in silico DNA-DNA hybridization values not more than 74.1, 68.5, and 20.2%, respectively. The fatty acids were mainly composed of C18:1ω7c (64.9%), iso-C16:0 (16.3%), and C16: 1ω7c/C16:1ω6c (6.0%). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylcholine. The predominant ubiquinone was Q-10 (94.9%). The genomic DNA G + C content was 66 mol%. Based on all these results, strain IM2376T was considered a novel species of a new genus in the family Rhodobacteraceae, for which the name Rhabdonatronobacter sediminivivens gen. nov., sp. nov. is proposed. The type strain of Rhabdonatronobacter sediminivivens is IM2376T (= CGMCC 1.17852T = KCTC 92134T).


Assuntos
Sedimentos Geológicos , Lagos , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Environ Microbiol ; 24(5): 2239-2258, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35048500

RESUMO

The KTK 4A-related Thermoplasmata thrives in the sediment of saline lakes; however, systematic research on its taxonomy, environmental adaptation and metabolism is lacking. Here, we detected this abundant lineage in the sediment of five artificially separated ponds (salinity 7.0%-33.0%) within a Chinese soda-saline lake using culture-independent metagenomics and archaeal 16S rRNA gene amplicons. The phylogenies based on the 16S rRNA gene, and 122 archaeal ubiquitous single-copy proteins and genome-level identity analyses among the metagenome-assembled genomes demonstrate this lineage forming a novel order, Candidatus Haloplasmatales, comprising four genera affiliated with the identical family. Isoelectric point profiles of predicted proteomes suggest that most members adopt the energetically favourable 'salt-in' strategy. Functional prediction indicates the lithoheterotrophic nature with the versatile metabolic potentials for carbohydrate and organic acids as well as carbon monoxide and hydrogen utilization. Additionally, hydrogenase genes hdrABC-mvhADG are linked with incomplete reductive citrate cycle genes in the genomes, suggesting their functional connection. Comparison with the coupling of HdrABC-MvhADG and methanogenesis pathway provides new insights into the compatibility of laterally acquired methanogenesis with energy metabolism in the related order Methanomassiliicoccales. Globally, our research sheds light on the taxonomy, environmental adaptative mechanisms, metabolic potentials and evolutional significance of Ca. Haloplasmatales.


Assuntos
Euryarchaeota , Metagenômica , Archaea/genética , Euryarchaeota/genética , Lagos , Metagenoma , RNA Ribossômico 16S/genética
10.
AMB Express ; 11(1): 142, 2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34693461

RESUMO

Microorganisms play an essential role in sulfide removal. Alkaline absorption solution facilitates the sulfide's dissolution and oxidative degradation, so haloalkaliphile is a prospective source for environmental-friendly and cost-effective biodesulfurization. In this research, 484 sulfide oxidation genes were identified from the metagenomes of the soda-saline lakes and a haloalkaliphilic heterotrophic bacterium Halomonas salifodinae IM328 (=CGMCC 22183) was isolated from the same habitat as the host for expression of a representative sequence. The genetic manipulation was successfully achieved through the conjugation transformation method, and sulfide: quinone oxidoreductase gene (sqr) was expressed via pBBR1MCS derivative plasmid. Furthermore, a whole-cell catalyst system was developed by using the engineered strain that exhibited a higher rate of sulfide oxidation under the optimal alkaline pH of 9.0. The whole-cell catalyst could be recycled six times to maintain the sulfide oxidation rates from 41.451 to 80.216 µmol·min-1·g-1 dry cell mass. To summarize, a whole-cell catalyst system based on the engineered haloalkaliphilic bacterium is potentiated to be applied in the sulfide treatment at a reduced cost.

11.
Environ Microbiol ; 23(11): 6463-6482, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34587356

RESUMO

Soda-saline lakes are polyextreme environments inhabited by many haloalkaliphiles, including one of the most abundant Spiribacter species. However, its mechanisms of adaptation are not ecophysiologically characterized. Based on a large-scale cultivation strategy, we obtained a representative isolate of this Spiribacter species whose relative abundance was the highest (up to 15.63%) in a wide range of salinities in the soda-saline lakes in Inner Mongolia, China. This species is a chemoorganoheterotrophic haloalkaliphile. It has a small and streamlined genome and utilizes a wide variety of compatible solutes to resist osmotic pressure and multiple monovalent cation/proton antiporters for pH homeostasis. In addition to growth enhancement by light under microaerobic conditions, cell growth, organic substrate consumption and polyhydroxybutyrate biosynthesis were also improved by inorganic sulfide. Both quantitative RT-PCR and enzymatic assays verified that sulfide:quinone oxidoreductase was upregulated during this process. Metatranscriptomic analysis indicated that all genes related to environmental adaptation were transcribed in natural environments. Overall, this study has identified a novel abundant haloalkaliphile with multiple and highly integrated adaptive strategies and found that inorganic sulfide was able to improve the adaptation of a heterotroph to polyextreme environments.


Assuntos
Bactérias , Lagos , China , Lagos/microbiologia , Salinidade
12.
Science ; 372(6541)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926924

RESUMO

CRISPR-Cas systems provide RNA-guided adaptive immunity in prokaryotes. We report that the multisubunit CRISPR effector Cascade transcriptionally regulates a toxin-antitoxin RNA pair, CreTA. CreT (Cascade-repressed toxin) is a bacteriostatic RNA that sequesters the rare arginine tRNAUCU (transfer RNA with anticodon UCU). CreA is a CRISPR RNA-resembling antitoxin RNA, which requires Cas6 for maturation. The partial complementarity between CreA and the creT promoter directs Cascade to repress toxin transcription. Thus, CreA becomes antitoxic only in the presence of Cascade. In CreTA-deleted cells, cascade genes become susceptible to disruption by transposable elements. We uncover several CreTA analogs associated with diverse archaeal and bacterial CRISPR-cas loci. Thus, toxin-antitoxin RNA pairs can safeguard CRISPR immunity by making cells addicted to CRISPR-Cas, which highlights the multifunctionality of Cas proteins and the intricate mechanisms of CRISPR-Cas regulation.


Assuntos
Proteínas Associadas a CRISPR/fisiologia , Sistemas CRISPR-Cas/fisiologia , Haloarcula/fisiologia , RNA Arqueal/fisiologia , Sistemas Toxina-Antitoxina/fisiologia , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Análise Mutacional de DNA , Regulação da Expressão Gênica em Archaea , Haloarcula/genética , Óperon , RNA de Transferência de Arginina/metabolismo , Sistemas Toxina-Antitoxina/genética
13.
Arch Microbiol ; 203(5): 2335-2342, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33651169

RESUMO

A haloalkaliphilic strain JWXQ-INN-674T was isolated from the water sample of a soda lake in Inner Mongolia Autonomous Region, China. Cells of the strain were coccoid, motile, and strictly aerobic. The strain was able to grow in presence of 2.6-5.4 M NaCl (optimum concentration is 3.4 M) at 30-50 °C (optimum temperature is 42 °C) and pH 7-9.5 (optimum pH is 9.0). The 16S rRNA gene sequence of strain JWXQ-INN-674T showed 95.3-96.6% similarity to members of the genus Natronorubrum of the family Natrialbaceae. The whole genome sequencing of strain JWXQ-INN-674T revealed a genome size of 4.56 M bp and a DNA G + C content of 62.5 mol%. Genome relatedness of strain JWXQ-INN-674T and other species in the genus Natronorubrum was analyzed by average nucleotide identity and digital DNA-DNA hybridization with the values of 76.8-90.6 and 23.1-39.3%, respectively. The strain possessed the polar lipids phosphatidylglycerol and methylated phosphatidylglycerol phosphate lipid. No glycolipids were detected. Based on phylogenetic analysis, phenotypic characteristics, chemotaxonomic properties and genome relatedness, the isolate was proposed as the type strain of a novel species of genus Natronorubrum, Natronorubrum halalkaliphilum sp. nov. (type strain JWXQ-INN-674T = CGMCC 1.17283T = JCM 34245T).


Assuntos
Halobacteriaceae/classificação , Halobacteriaceae/genética , Lagos/microbiologia , Composição de Bases/genética , China , DNA Arqueal/genética , Genoma Arqueal/genética , Halobacteriaceae/isolamento & purificação , Lipídeos/análise , Tipagem Molecular , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/análise
14.
Antonie Van Leeuwenhoek ; 114(1): 83-94, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33389352

RESUMO

A novel extremely halophilic archaeon, strain N1521T, was isolated from a saline lake in Tibet, China. Cells of the strain were pleomorphic and Gram-stain-negative. It produced red pigments. Growth was observed at 4-42 °C (optimum, 37 °C), pH 7.0-10.5 (optimum, 8.0-9.5), NaCl 11%-25% (optimum, 15%) and in the presence of 0-0.1 M MgCl2 (optimum, 0.05 M) in aerobic conditions. The minimum NaCl concentration that prevented cell lysis was 2% (w/v). The major polar lipids of strain N1521T were phosphatidylglycerol sulfate, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol and an unidentified glycolipid. The DNA G + C content was 58.37 mol%. According to 16S rRNA gene sequence comparisons, strain N1521T revealed the highest sequence similarity to Haloprofundus halophilus NK23T (91.38%) and Halogranum amylolyticum TNN58T (91.00%), and low sequence similarities (< 91%) with other genera in the order Haloferacales. Phylogenetic analysis based on the 16S rRNA gene and rpoB' gene sequence showed that strain N1521T was distinct from the members of the order Haloferacales. The digital DNA-DNA hybridization, average nucleotide identity and average amino acid identity values calculated from whole genome-sequence comparison between strain N1521T and the members of the order Haloferacales were in the ranges of 15.1-18.2%, 68.8-73.0%, and 58.4-63.9%, respectively. Phylogenetic tree reconstructions based on the whole-genome sequences revealed that strain N1521T was closer to the members of the family Halorubraceae. Based on the data obtained, strain N1521T is thus considered to represent a novel species of a new genus within the family Halorubraceae, for which the name Halalkalirubrum salinum gen. nov., sp. nov. is proposed. The type strain is N1521T (= CGMCC 1.16693 = JCM 33785).


Assuntos
Halobacteriaceae , Lagos , Composição de Bases , China , DNA Arqueal/genética , Halobacteriaceae/genética , Filogenia , Extratos Vegetais , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Artigo em Inglês | MEDLINE | ID: mdl-33275091

RESUMO

A haloalkaliphilic strain XQ-INN 246T was isolated from the sediment of a salt pond in Inner Mongolia Autonomous Region, China. Cells of the strain were rods, motile and strictly aerobic. The strain was able to grow in the presence of 2.6-5.3 M NaCl (optimum concentration is 4.4 M) at 30-50 °C (optimum temperature is 42 °C) and pH 7.0-10.0 (optimum pH is 8.0-8.5). The whole genome sequencing of strain XQ-INN 246T revealed a genome size of 4.52 Mbp and a DNA G+C content of 62.06 mol%. Phylogenetic tree based on 16S rRNA gene sequences and concatenated amino acid sequences of 122 single-copy conserved proteins revealed a robust lineage of the strain XQ-INN 246T with members of related genera of the family Natrialbaceae. The strain possessed the polar lipids of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. No glycolipids were detected. Based on phylogenetic analysis, phenotypic characteristics, chemotaxonomic properties and genome relatedness, the isolate was proposed as the type strain of a novel species of a new genus within the family Natrialbaceae, for which the name Salinadaptatus halalkaliphilus gen. nov., sp. nov. is proposed. The type strain is XQ-INN 246T (=CGMCC 1.16692T=JCM 33751T).


Assuntos
Halobacteriaceae/classificação , Filogenia , Lagoas/microbiologia , Águas Salinas , Composição de Bases , China , DNA Arqueal/genética , Halobacteriaceae/isolamento & purificação , Fosfatidilgliceróis/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Front Microbiol ; 11: 1740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793172

RESUMO

Soda-saline lakes are a special type of alkaline lake in which the chloride concentration is greater than the carbonate/bicarbonate concentration. Due to the high pH and a usually higher osmotic pressure than that of a normal soda lake, the microbes may need more energy to thrive in such a double-extreme environment. In this study, we systematically investigated the microbiome of the brine and sediment samples of nine artificially separated ponds (salinities from 5.5% to saturation) within two soda-saline lakes in Inner Mongolia of China, assisted by deep metagenomic sequencing. The main inorganic ions shaped the microbial community in both the brines and sediments, and the chloride concentration exhibited the most significant effect. A total of 385 metagenome-assembled genomes (MAGs) were generated, in which 38 MAGs were revealed as the abundant species in at least one of the eighteen different samples. Interestingly, these abundant species also represented the most branches of the microbiome of the soda-saline lakes at the phylum level. These abundant taxa were close relatives of microorganisms from classic soda lakes and neutral saline environments, but forming a combination of both habitats. Notably, approximately half of the abundant MAGs had the potential to drive dissimilatory sulfur cycling. These MAGs included four autotrophic Ectothiorhodospiraceae MAGs, one Cyanobacteria MAG and nine heterotrophic MAGs with the potential to oxidize sulfur, as well as four abundant MAGs containing genes for elemental sulfur respiration. The possible reason is that reductive sulfur compounds could provide additional energy for the related species, and reductions of oxidative sulfur compounds are more prone to occur under alkaline conditions which support the sulfur cycling. In addition, a unique 1,4-alpha-glucan phosphorylation pathway, but not a normal hydrolysis one, was found in the abundant Candidatus Nanohaloarchaeota MAG NHA-1, which would produce more energy in polysaccharide degradation. In summary, this work has revealed the abundant taxa and favorable pathways in the soda-saline lakes, indicating that efficient energy regeneration pathway may increase the capacity for environmental adaptation in such saline-alkaline environments. These findings may help to elucidate the relationship between microbial metabolism and adaptation to extreme environments.

17.
Extremophiles ; 24(4): 475-483, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32328734

RESUMO

The mineralization of alkane is mainly driven by microorganisms, and the detailed mechanisms of long-chain aliphatic alkane degradation are undeciphered in archaea. We used a hexadecane-degrading haloarchaeon, Halorientalis hydrocarbonoclasticus IM1011 (= CGMCC 13754), as a model system to decode this through transcriptomic and biochemical studies. During growth on hexadecane as sole carbon source, the activity of 3-hydroxyacyl-CoA dehydrogenase, a ß-oxidation pathway enzyme, was measured. Biochemical and culture growth experiments confirmed the role of the ß-oxidation pathway in aliphatic alkane degradation. Subsequently, transcriptomic analysis of H. hydrocarbonoclasticus cultured in acetate vs. acetate and hexadecane revealed that seven up-regulated genes were common in 5- and 24-h samples. Three were annotated as ribonucleoside-diphosphate reductase R2-like (RNRR2-like) genes, which were predicted to involve in the biodegradation of hexadecane. Based on the transcriptomic level, the putative functional genes were inferred from multiple isogenes. Among these genes, an important cluster encodes three enzymes for the ß-oxidation pathway as well as long-chain fatty acid-CoA ligase for pre-step. The present research identified the function of the ß-oxidation pathway in aliphatic alkane degradation and recognized the functional genes in haloarchaea. The mineralization of aliphatic alkane in extreme environments driven by archaea was further understood through this study.


Assuntos
Alcanos/metabolismo , Archaea , Biodegradação Ambiental , Carbono , Oxirredução
18.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31350314

RESUMO

Phosphoenolpyruvate (PEP)/pyruvate interconversion is a major metabolic point in glycolysis and gluconeogenesis and is catalyzed by various sets of enzymes in different Archaea groups. In this study, we report the key enzymes that catalyze the anabolic and catabolic directions of the PEP/pyruvate interconversion in Haloferax mediterranei The in silico analysis showed the presence of a potassium-dependent pyruvate kinase (PYKHm [HFX_0773]) and two phosphoenol pyruvate synthetase (PPS) candidates (PPSHm [HFX_0782] and a PPS homolog protein named PPS-like [HFX_2676]) in this strain. Expression of the pykHm gene and ppsHm was induced by glycerol and pyruvate, respectively; whereas the pps-like gene was not induced at all. Similarly, genetic analysis and enzyme activities of purified proteins showed that PYKHm catalyzed the conversion from PEP to pyruvate and that PPSHm catalyzed the reverse reaction, while PPS-like protein displayed no function in PEP/pyruvate interconversion. Interestingly, knockout of the pps-like gene led to a 70.46% increase in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production. The transcriptome sequencing (RNA-Seq) and quantitative reverse transcription-PCR (qRT-PCR) results showed that many genes responsible for PHBV monomer supply and for PHBV synthesis were upregulated in a pps-like gene deletion strain and thereby improved PHBV accumulation. Additionally, our phylogenetic evidence suggested that PPS-like protein diverged from PPS enzyme and evolved as a distinct protein with novel function in haloarchaea. Our findings attempt to fill the gaps in central metabolism of Archaea by providing comprehensive information about key enzymes involved in the haloarchaeal PEP/pyruvate interconversion, and we also report a high-yielding PHBV strain with great future potentials.IMPORTANCEArchaea, the third domain of life, have evolved diversified metabolic pathways to cope with their extreme habitats. Phosphoenol pyruvate (PEP)/pyruvate interconversion during carbohydrate metabolism is one such important metabolic process that is highly differentiated among Archaea However, this process is still uncharacterized in the haloarchaeal group. Haloferax mediterranei is a well-studied haloarchaeon that has the ability to produce polyhydroxyalkanoates (PHAs) under unbalanced nutritional conditions. In this study, we identified the key enzymes involved in this interconversion and discussed their differences with their counterparts from other members of the Archaea and Bacteria domains. Notably, we found a novel protein, phosphoenolpyruvate synthetase-like (PPS-like), which exhibited high homology to PPS enzyme. However, PPS-like protein has evolved some distinct sequence features and functions, and strikingly the corresponding gene deletion helped to enhance poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) synthesis significantly. Overall, we have filled the gap in knowledge about PEP/pyruvate interconversion in haloarchaea and reported an efficient strategy for improving PHBV production in H. mediterranei.


Assuntos
Proteínas Arqueais/metabolismo , Haloferax mediterranei/enzimologia , Fosfotransferases (Aceptores Pareados)/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Proteínas Arqueais/genética , Carbono/metabolismo , Técnicas de Inativação de Genes , Glicerol/metabolismo , Haloferax mediterranei/genética , Redes e Vias Metabólicas , Fosfotransferases (Aceptores Pareados)/genética , Filogenia , Poliésteres/metabolismo , Ácido Pirúvico/metabolismo
19.
Nucleic Acids Res ; 47(11): 5880-5891, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30957847

RESUMO

Recent studies on CRISPR adaptation revealed that priming is a major pathway of spacer acquisition, at least for the most prevalent type I systems. Priming is guided by a CRISPR RNA which fully/partially matches the invader DNA, but the plasticity of this RNA guide has not yet been characterized. In this study, we extensively modified the two conserved handles of a priming crRNA in Haloarcula hispanica, and altered the size of its central spacer part. Interestingly, priming is insusceptible to the full deletion of 3' handle, which seriously impaired crRNA stability and interference effects. With 3' handle deletion, further truncation of 5' handle revealed that its spacer-proximal 6 nucleotides could provide the least conserved sequence required for priming. Subsequent scanning mutation further identified critical nucleotides within 5' handle. Besides, priming was also shown to tolerate a wider size variation of the spacer part, compared to interference. These data collectively illustrate the high tolerance of priming to extensive structural/size variations of the crRNA guide, which highlights the structural flexibility of the crRNA-effector ribonucleoprotein complex. The observed high priming effectiveness suggests that primed adaptation promotes clearance of the fast-replicating and ever-evolving viral DNA, by rapidly and persistently multiplexing the interference pathway.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Haloarcula/genética , RNA Guia de Cinetoplastídeos , Adaptação Fisiológica , Proteínas Associadas a CRISPR/metabolismo , Primers do DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Mutação , Plasmídeos/metabolismo
20.
Front Microbiol ; 9: 2893, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555438

RESUMO

Lycopene attracts increasing interests in the pharmaceutical, food, and cosmetic industries due to its anti-oxidative and anti-cancer properties. Compared with other lycopene production methods, such as chemical synthesis or direct extraction from plants, the biosynthesis approach using microbes is more economical and sustainable. In this work, we engineered Haloferax mediterranei, a halophilic archaeon, as a new lycopene producer. H. mediterranei has the de novo synthetic pathway for lycopene but cannot accumulate this compound. To address this issue, we reinforced the lycopene synthesis pathway, blocked its flux to other carotenoids and disrupted its competitive pathways. The reaction from geranylgeranyl-PP to phytoene catalyzed by phytoene synthase (CrtB) was identified as the rate-limiting step in H. mediterranei. Insertion of a strong promoter PphaR immediately upstream of the crtB gene, or overexpression of the heterologous CrtB and phytoene desaturase (CrtI) led to a higher yield of lycopene. In addition, blocking bacterioruberin biosynthesis increased the purity and yield of lycopene. Knock-out of the key genes, responsible for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biosynthesis, diverted more carbon flux into lycopene synthesis, and thus further enhanced lycopene production. The metabolic engineered H. mediterranei strain produced lycopene at 119.25 ± 0.55 mg per gram of dry cell weight in shake flask fermentation. The obtained yield was superior compared to the lycopene production observed in most of the engineered Escherichia coli or yeast even when they were cultivated in pilot scale bioreactors. Collectively, this work offers insights into the mechanism involved in carotenoid biosynthesis in haloarchaea and demonstrates the potential of using haloarchaea for the production of lycopene or other carotenoids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...